

1

Dirichlet boundary conditions

- Up to this point, we've used Dirichlet boundary conditions:

$$
\begin{aligned}
& u(a)=u_{a} \\
& u(b)=u_{b}
\end{aligned}
$$

- Recall that this affected the first and last equations:

$$
\begin{gathered}
p_{1} u_{0}+q_{1} u_{1}+r_{1} u_{2}=2 g\left(x_{1}\right) h^{2} \\
p_{n-1} u_{n-2}+q_{n-1} u_{n-1}+r_{n-1} u_{n}=2 g\left(x_{n-1}\right) h^{2}
\end{gathered}
$$

3

Neumann and insulated boundary conditions

- What happens if a boundary has an insulated or more generally a Neumann boundary condition?

$$
\begin{array}{ll}
u^{(1)}(a)=0 & u^{(1)}(a)=u_{a}^{(1)} \\
u^{(1)}(b)=0 & u^{(1)}(b)=u_{b}^{(1)}
\end{array}
$$

Neumann and insulated boundary conditions

- Suppose we have a Neumann boundary condition at $x=a$:

$$
u^{(1)}(a)=u_{a}^{(1)}
$$

- How do we eliminate the unknown u_{0} ?

$$
p_{1} u_{0}+q_{1} u_{1}+r_{1} u_{2}=2 g\left(x_{1}\right) h^{2}
$$

- If we don't eliminate it, we will have fewer equations than unknowns...

5

Approximating the derivative

- Recall we used a divided-difference approximation of the derivative:

$$
\frac{u(a+h)-u(a)}{h} \approx u^{(1)}(a)=u_{a}^{(1)}
$$

$-\operatorname{But} u(a) \approx u_{0}$ and $u(a+h) \approx u_{1}:$

$$
\frac{u_{1}-u_{0}}{h} \approx u_{a}^{(1)}
$$

- Thus, we have an equation

$$
u_{0}=u_{1}-u_{a}^{(1)} h
$$

Approximating the derivative

- Thus, if we have a left-hand Neumann condition, we have

$$
\begin{aligned}
p_{1} u_{0}+q_{1} u_{1}+r_{1} u_{2} & =2 g\left(x_{1}\right) h^{2} \\
u_{0} & =u_{1}-u_{a}^{(1)} h
\end{aligned}
$$

- Substituting the second into the first yields

$$
\begin{aligned}
p_{1}\left(u_{1}-u_{a}^{(1)} h\right)+q_{1} u_{1}+r_{1} u_{2} & =2 g\left(x_{1}\right) h^{2} \\
\left(p_{1}+q_{1}\right) u_{1}+r_{1} u_{2} & =2 g\left(x_{1}\right) h^{2}+p_{1} u_{a}^{(1)} h
\end{aligned}
$$

- Thus, entry $(1,1)$ of the matrix needs to be updated and entry 1 of the target vector needs to be updated

7

Approximating the derivative

- Similarly, we can find on the right-hand boundary value:

$$
\begin{gathered}
p_{n-1} u_{n-2}+q_{n-1} u_{n-1}+r_{n-1} u_{n}=2 g\left(x_{n-1}\right) h^{2} \\
u_{n}=u_{n-1}+u_{b}^{(1)} h
\end{gathered}
$$

- This yields

$$
p_{n-1} u_{n-2}+\left(q_{n-1}+r_{n-1}\right) u_{n-1}=2 g\left(x_{n-1}\right) h^{2}-r_{n-1} u_{b}^{(1)} h
$$

- Thus, entry ($n-1, n-1$) of the matrix needs to be updated and entry $n-1$ of the target vector needs to be updated

Implementation

```
function [xs, us] = bvp( a2, a1, a0, g, x_rng, u_bndry, dirichlet, n )
    h = (x_rng(2) - x_rng(1))/n;
    p = @(x)( 2.0*a2(x) - a1(x)*h );
    q = @(x)(-4.0*a2(x) + 2.0*a0(x)*h^2);
    r = @(x)( 2.0*a2(x) + a1(x)*h );
    xs = linspace( x_rng(1) + h, x_rng(2) - h, n - 1 )';
    A = zeros( n - 1, n - 1 );
    for k = 1:(n - 1)
        A(k,k) = q(xs(k));
    end
    for k = 1:(n - 2)
    A(k+1,k ) = p(xs(k + 1));
    A(k, k + 1) = r(xs(k));
    end
```


Implementation

```
v = 2.0*g( xs )*h^2;
if dirichlet( 1 )
    v(1) = v(1) - p(xs(1))*u_bndry(1);
else
    A(1, 1) = A(1, 1)
                                + p(xs(1))
                                + p(xs(1))*u_bndry(1)*h;
end
                                    (\mp@subsup{p}{1}{}+\mp@subsup{q}{1}{})\mp@subsup{u}{1}{}+\mp@subsup{r}{1}{}\mp@subsup{u}{2}{}=2g(\mp@subsup{x}{1}{})\mp@subsup{h}{}{2}+\mp@subsup{p}{1}{}\mp@subsup{u}{a}{(1)}h
if dirichlet( 2 )
    v(end) = v(end) - r(xs(end))*u_bndry(2);
else
    A(end, end) = A(end, end) + r(xs(end));
    v(end) = v(end) - r(xs(end))*u_bndry(2)*h
end
    p}\mp@subsup{n}{n-1}{}\mp@subsup{u}{n-2}{}+(\mp@subsup{q}{n-1}{}+\mp@subsup{r}{n-1}{})\mp@subsup{u}{n-1}{}=2g(\mp@subsup{x}{n-1}{})\mp@subsup{h}{}{2}-\mp@subsup{r}{n-1}{}\mp@subsup{u}{b}{(1)}
```


Implementation

$u s=A \backslash v ;$
xs $=\left[x_{-} r n g(1) ; x s ; x_{-} r n g(2)\right]$;
if dirichlet(1)

$$
u s=\left[u_{-} \text {bndry }(1) ; u s\right] ;
$$

else

$$
\text { us }=\left[\text { us(1) }-u_{-} \operatorname{bndry}(1) * \mathrm{~h} ; \mathrm{us}\right] ; \quad u_{0}=u_{1}-u_{a}^{(1)} h
$$

end
if dirichlet(2)
us = [us; u_bndry(2)];
else
us $=$ [us; us(end) $+u_{\text {_bndry }(2) * h] ; ~} u_{n}=u_{n-1}+u_{b}^{(1)} h$
end
end

11

Example

- Let us examine this BVP:

$$
\begin{aligned}
13 x^{2} u^{(2)}(x)-5 u^{(1)}(x)+8 x u(x) & =\sin (x) \\
u^{(1)}(-1) & =-0.4738221764482897 \\
u(1) & =2
\end{aligned}
$$

- If $n=10$, then $h=0.2$, so

$$
\begin{aligned}
p_{k}=2 a_{2}\left(x_{k}\right)-a_{1}\left(x_{k}\right) h & =2 \cdot 13 x_{k}^{2}-(-5) \cdot 0.2 \\
q_{k} & =-4 a_{2}\left(x_{k}\right)+2 a_{0}\left(x_{k}\right) h^{2}
\end{aligned}=-4 \cdot 13 x_{k}^{2}+2 \cdot 8 x \cdot 0.04, \begin{aligned}
r_{k} & =2 a_{2}\left(x_{k}\right)+a_{1}\left(x_{k}\right) h
\end{aligned}=2 \cdot 13 x_{k}^{2}+(-5) \cdot 0.24
$$

- As before,
the x-values are $-1,-0.8,-0.6,-0.4,-0.2,0,0.2,0.4,0.6,0.8,1$

2. Neumann and insulated boundary conditions

Example

- We can call our function with the appropriate arguments:

$$
\begin{aligned}
\gg[x s, u s]=\operatorname{bvp}(& @(x)\left(x^{\wedge} 2^{*} 13\right), ~ @(x)(-5.0), @(x)\left(8^{*} x\right), \ldots \\
& @ \sin ,[-11],[-0.47382217644828972], \ldots \\
& {[f f a l s e, \text { true }], 10) }
\end{aligned}
$$

15

An $\mathrm{O}\left(h^{2}\right)$ approximation

- Recall we used a divided-difference approximation of the derivative:

$$
\begin{gathered}
\frac{-u_{2}+4 u_{1}-3 u_{0}}{2 h}=u_{a}^{(1)} \quad \frac{u_{n-2}-4 u_{n-1}+3 u_{n}}{2 h}=u_{b}^{(1)} \\
u_{0}=-\frac{2}{3} u_{a}^{(1)} h+\frac{4}{3} u_{1}-\frac{1}{3} u_{2} \quad u_{n}=\frac{2}{3} u_{b}^{(1)} h+\frac{4}{3} u_{n-1}-\frac{1}{3} u_{n-2} \\
p_{1} u_{0}+q_{1} u_{1}+r_{1} u_{2}=2 g\left(x_{1}\right) h^{2} \quad p_{n-1} u_{n-2}+q_{n-1} u_{n-1}+r_{n-1} u_{n}=2 g\left(x_{n-1}\right) h^{2} \\
\left(q_{1}+\frac{4}{3} p_{1}\right) u_{1}+\left(r_{1}-\frac{1}{3} p_{1}\right) u_{2}=2 g\left(x_{1}\right) h^{2}+\frac{2}{3} p_{1} u_{a}^{(1)} h \\
\left(p_{n-1}-\frac{1}{3} r_{n-1}\right) u_{n-2}+\left(q_{n-1}+\frac{4}{3} r_{n-1}\right) u_{n-1}=2 g\left(x_{n-1}\right) h^{2}-\frac{2}{3} r_{n-1} u_{b}^{(1)} h
\end{gathered}
$$

17

Implementation

```
function [xs, us] = bvp( a2, a1, a0, g, x_rng, u_bndry, dirichlet, n )
    h = (x_rng(2) - x_rng(1))/n;
    p = @(x)( 2.0*a2(x) - a1(x)*h );
    q = @(x)(-4.0*a2(x) + 2.0*a0(x)*h^2);
    r = @(x)( 2.0*a2(x) + a1(x)*h );
    xs = linspace( x_rng(1) + h, x_rng(2) - h, n - 1 )';
    A = zeros( n - 1, n - 1 );
    for k = 1:(n - 1)
        A(k, k) = q(xs(k));
    end
    for k = 1:(n - 2)
        A(k+1,k ) = p(xs(k + 1));
        A(k, k + 1) = r(xs(k));
    end
```


Implementation

```
v = 2.0*g( xs )*h^2;
if dirichlet( 1 )
    v(1) = v(1) - p(xs(1) )*u_bndry(1);
else
    A(1, 1) = A(1, 1) + (4.0/3.0)*p(xs(1));
    A(1, 2) = A(1, 2) - (1.0/3.0)*p(xs(1));
    v(1) = v(1) + (2.0/3.0)*p(xs(1))*u_bndry(1)*h;
end
if dirichlet( 2 )
    v(end) = v(end) - r(xs(end))*u_bndry(2);
else
    A(end, end-1) = A(end, end-1) - (1.0/3.0)*r(xs(end));
    A(end, end) = A(end, end) + (4.0/3.0)*r(xs(end));
    v(end) = v(end) - (2.0/3.0)*r(xs(end))*u_bndry(2)*h;
end



21


\section*{Insulated boundary conditions}
- Recall that insulated boundary conditions are when the derivatives are zero
- Consequently, only the matrix is modified,
as the change to the target vector is zero
\[
\begin{aligned}
\left(q_{1}+\frac{4}{3} p_{1}\right) u_{1}+\left(r_{1}-\frac{1}{3} p_{1}\right) u_{2} & =2 g\left(x_{1}\right) h^{2}+\frac{2}{3} p_{1} u_{a}^{(1)} h \\
\left(p_{n-1}-\frac{1}{3} r_{n-1}\right) u_{n-2}+\left(q_{n-1}+\frac{4}{3} r_{n-1}\right) u_{n-1} & =2 g\left(x_{n-1}\right) h^{2}-\frac{2}{3} r_{n} u_{b}^{(1)} h
\end{aligned}
\]

\section*{Summary}
- Following this topic, you now
- Understand better what Neumann conditions are
- Understand that better approximations cannot compensate for poorer approximations
- Know how to approximation a BVP with Neumann conditions
- Have gone through an implementations in Matlab
- Have seen an example


25


\section*{Colophon}
These slides were prepared using the Cambria typeface. Mathematical equations use Times New Roman, and source code is presented using Consolas. Mathematical equations are prepared in MathType by Design Science, Inc. Examples may be formulated and checked using Maple by Maplesoft, Inc.
The photographs of flowers and a monarch butter appearing on the title slide and accenting the top of each other slide were taken at the Royal Botanical Gardens in October of 2017 by Douglas Wilhelm Harder. Please see
https://www.rbg.ca/
for more information.

27


28```

