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Neumann and insulated
boundary conditions

Introduction

• In this topic, we will

– Review Neumann boundary conditions

– Approximate derivatives using the formula from calculus

– Author a solution in MATLAB using this approximation

– Observe there are weaknesses in such an approach

– Consider a superior approach
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Dirichlet boundary conditions

• Up to this point, we’ve used Dirichlet boundary conditions:

• Recall that this affected the first and last equations:
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Neumann and insulated boundary conditions

• What happens if a boundary has an insulated or more generally
a Neumann boundary condition?

Neumann and insulated boundary conditions

4

( )( ) ( )

( )( ) ( )

1 1

1 1

a

b

u a u

u b u

=

=

( )( )
( )( )

1

1

0

0

u a

u b

=

=

3

4



3/27/2021

3

Neumann and insulated boundary conditions

• Suppose we have a Neumann boundary condition at x = a:

– How do we eliminate the unknown u0?

– If we don’t eliminate it, we will have fewer equations than 
unknowns…
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Approximating the derivative

• Recall we used a divided-difference approximation of the 
derivative:

– But u(a) ≈ u0 and u(a + h) ≈ u1:

– Thus, we have an equation 
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Approximating the derivative

• Thus, if we have a left-hand Neumann condition, we have

– Substituting the second into the first yields

– Thus, entry (1,1) of the matrix needs to be updated and
entry 1 of the target vector needs to be updated
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Approximating the derivative

• Similarly, we can find on the right-hand boundary value:

– This yields

– Thus, entry (n – 1, n – 1) of the matrix needs to be updated and 
entry n – 1 of the target vector needs to be updated
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Implementation

function [xs, us] = bvp( a2, a1, a0, g, x_rng, u_bndry, dirichlet, n )

h = (x_rng(2) - x_rng(1))/n;

p = @(x)( 2.0*a2(x) - a1(x)*h  );

q = @(x)(-4.0*a2(x) + 2.0*a0(x)*h^2);

r = @(x)( 2.0*a2(x) +     a1(x)*h  );

xs = linspace( x_rng(1) + h, x_rng(2) - h, n - 1 )';

A = zeros( n - 1, n - 1 );

for k = 1:(n - 1)

A(k, k) = q(xs(k));

end

for k = 1:(n - 2)

A(k + 1, k    ) = p(xs(k + 1));

A(k,     k + 1) = r(xs(k));

end
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Implementation

v = 2.0*g( xs )*h^2;

if dirichlet( 1 )

v(1)   = v(1)     - p(xs(1))*u_bndry(1);

else

A(1, 1) = A(1, 1) + p(xs(1));

v(1)    = v(1)    + p(xs(1))*u_bndry(1)*h; 

end

if dirichlet( 2 )

v(end)      = v(end)      - r(xs(end))*u_bndry(2);

else

A(end, end) = A(end, end) + r(xs(end));

v(end)      = v(end)      - r(xs(end))*u_bndry(2)*h; 

end
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Implementation

us = A \ v;

xs = [x_rng(1); xs; x_rng(2)];

if dirichlet( 1 )

us = [u_bndry(1); us];

else

us = [us(1) - u_bndry(1)*h; us];

end

if dirichlet( 2 ) 

us = [us; u_bndry(2)];

else

us = [us; us(end) + u_bndry(2)*h];

end

end
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Example

• Let us examine this BVP:

• If n = 10, then h = 0.2, so

• As before,
the x-values are –1, –0.8, –0.6, –0.4, –0.2, 0, 0.2, 0.4, 0.6, 0.8, 1
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Example

• We can call our function with the appropriate arguments:
>> [xs, us] = bvp( @(x)(x^2*13), @(x)(-5.0), @(x)(8*x),...

@sin, [-1 1], [-0.4738221764482897 2], ...

[false, true], 10 )
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Example

• Solving this system of linear equations yields:
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Example

• Here is a plot of the solution and the approximations:

Neumann and insulated boundary conditions

15

( )

( )

1 1

1 2

u

u

− =

=

( )( )

( )

1
1 0.4738221764482897

1 2

u

u

− = −

=

Error analysis

• Problem:

– When we substituted the derivative and second derivative,
we used O(h2) approximations

– When we approximated the derivatives,
we used O(h) approximations

– Consequently, the overall error will now be O(h)
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An O(h2) approximation

• Recall we used a divided-difference approximation of the 
derivative:
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Implementation

function [xs, us] = bvp( a2, a1, a0, g, x_rng, u_bndry, dirichlet, n )

h = (x_rng(2) - x_rng(1))/n;

p = @(x)( 2.0*a2(x) - a1(x)*h  );

q = @(x)(-4.0*a2(x) + 2.0*a0(x)*h^2);

r = @(x)( 2.0*a2(x) +     a1(x)*h  );

xs = linspace( x_rng(1) + h, x_rng(2) - h, n - 1 )';

A = zeros( n - 1, n - 1 );

for k = 1:(n - 1)

A(k, k) = q(xs(k));

end

for k = 1:(n - 2)

A(k + 1, k    ) = p(xs(k + 1));

A(k,     k + 1) = r(xs(k));

end
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Implementation

v = 2.0*g( xs )*h^2;

if dirichlet( 1 )

v(1)   = v(1)   - p(xs(1)  )*u_bndry(1);

else

A(1, 1) = A(1, 1) + (4.0/3.0)*p(xs(1));

A(1, 2) = A(1, 2) - (1.0/3.0)*p(xs(1));

v(1)    = v(1)    + (2.0/3.0)*p(xs(1))*u_bndry(1)*h; 

end

if dirichlet( 2 )

v(end) = v(end) - r(xs(end))*u_bndry(2);

else

A(end, end-1) = A(end, end-1) - (1.0/3.0)*r(xs(end));

A(end, end)   = A(end, end)   + (4.0/3.0)*r(xs(end));

v(end)        = v(end)        - (2.0/3.0)*r(xs(end))*u_bndry(2)*h; 

end
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Implementation

us = A \ v;

xs = [x_rng(1); xs; x_rng(2)];

if dirichlet( 1 )

us = [u_bndry(1); us];

else

us = [(-1.0/3.0)*us(2) + (4.0/3.0)*us(1) ...

- (2.0/3.0)*u_bndry(1)*h; us];

end

if dirichlet( 2 ) 

us = [us; u_bndry(2)];

else

us = [us; (-1.0/3.0)*us(end-1) + (4.0/3.0)*us(end) ...

+ (2.0/3.0)*u_bndry(2)*h];

end

end
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Example

• Solving this system of linear equations yields:
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Example

• The O(h) approximation is on the left,
the O(h2) approximation is on the right
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Insulated boundary conditions

• Recall that insulated boundary conditions are when the 
derivatives are zero

– Consequently, only the matrix is modified,
as the change to the target vector is zero
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Summary

• Following this topic, you now

– Understand better what Neumann conditions are

– Understand that better approximations cannot compensate for 
poorer approximations

– Know how to approximation a BVP with Neumann conditions

– Have gone through an implementations in MATLAB

– Have seen an example
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Colophon 

These slides were prepared using the Cambria typeface. Mathematical equations 
use Times New Roman, and source code is presented using Consolas.  
Mathematical equations are prepared in MathType by Design Science, Inc.

Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and 
accenting the top of each other slide were taken at the Royal Botanical Gardens in 
October of 2017 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.
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Disclaimer

These slides are provided for the ECE 204 Numerical methods
course taught at the University of Waterloo. The material in it
reflects the author’s best judgment in light of the information
available to them at the time of preparation. Any reliance on these
course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility
for damages, if any, suffered by any party as a result of decisions
made or actions based on these course slides for any other purpose
than that for which it was intended.

Neumann and insulated boundary conditions

28

27

28


